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Chapter 1

The Initial Problem

New processors today rarely have a significantly higher clock frequency compared the
previous processor generation, instead the processors often gets physically smaller, and
the amount of transistors in the processors increase[1].
The processors clock frequency is directly linked to its heat dissipation which results in
several problems trying to keep the processor cold, the higher the clock frequency is[2;
3]. Instead of increasing the clock frequency of the processor, the newer generations
of processors often have more cores clocked at a lower frequency[4], which makes it
possible to perform several computations in parallel, with a more manageable heat
dissipation, than at a higher clock frequency.
To utilise the many cores in a multi-core processing unit, it requires that the programs
perform several computations in parallel. This can be difficult for the programmer to
manage, as a program thus no longer is a sequential sequence of computations and
effects[5], as the order of when the computations are performed can vary for each
execution of a parallel program[6; 7; 8].

This project will look at how developing software, designed for modern processors,
by modern meaning processors with multiple cores produced after 2009. Creating a
programming language which can be simpler for the programmer to learn and use;
and how many of the current problems characterising parallel programming can be
avoided with a new programming language.

When designing a new programming language that is easy to read and write for devel-
opers; it is important to know what programming paradigms most developers already
use. According to the Tiobe index[9], an index showing the current popularity of
programming languages, four of the top five languages are Object-Oriented Program-
ming (OOP) languages[9; 10]. The combined usage percentage of the four languages
account for a third of the programming languages[9]. This makes the OOP paradigm
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a good choice for a new programming language. In the top right corner of [Figure 1.1]1
is the languages with most GitHub repositories and tags on StackOverflow, among the
top 10 languages 8 of them are primarily Object-Oriented (OO).

Figure 1.1: RedMonk programming rankings from 2015[11]

Designing a new language within this paradigm, means that developers would be
able to pick up on the fundamentals of the language quickly, without needing an
introduction to the basic principles of the language. Because of this, the programming
language that will be designed and implemented in conjunction with this paper will
be OO.

This leads to the following initial problem statement:

How can developing programs for a multi-core processing unit be optimised in regards
to the programmer in an OO language?

1For a full size picture see appendix B
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Chapter 2

Parallelism

In this chapter parallelism and parallel models and methods will be described.

2.1 Parallelism Definitions

This chapter will describe and define a classification of computer architectures based on
Flynn’s taxonomy and Parallel Random Access Machine[12]. Afterwards a description
and a definition for each of the terms Parallel Processing and Parallel Programming
so that the rest of the paper can work with these definitions. This is done to make
sure that the reader of this paper understands these terms and use the definitions as
references if needed.

2.1.1 Flynn’s Taxonomy

Flynn’s taxonomy is a categorisation of forms of parallel computer architectures[13].
This categorisation is based on the notion of a stream of information[12]

Single Instruction Single Data

Conventional single processor, uniprocessor, computers are classified as Single Input
Single Data (SISD) systems[14]. These processors compute a single instruction at a
time with a single piece of data as seen in [Figure 2.1]. SISD cannot be parallelised
as it is a single instruction that is being executed on a single data, which means it
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cannot be divided[14].

Figure 2.1: A visual representation of SISD[15]

Single Instruction Multiple Data

Single Input Multiple Data (SIMD) machines have one instruction processing unit,
sometimes called a controller, and several processing units as seen in [Figure 2.2][16].
One advantage of this style of parallel machine organisation is a saving in the amount
of logic, anywhere from 20 to 50 percent of the logic on a typical processor chip is
dedicated to control, decoding and scheduling instructions[16]. The rest is used for
on-chip storage and the logic required to implement the data processing[16].

Figure 2.2: A visual representation of SIMD[15]
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Multiple Instruction Single Data

Multiple Input Single Data (MISD) is a type of parallel computing where many func-
tional units perform different operations on the same data as seen in [Figure 2.3][17].
In other words, all instructions have shared access to the same data on which the
execute their own separate instructions. Fault-tolerant computers executing the same
instructions redundantly in order to detect and mask errors, in a manner known as
task replication, may be considered to belong to this type[17]. Not many instances
of this architecture exist compared to Multiple Input Multiple Data (MIMD) and
SIMD, as they are more appropriate for common data parallel techniques[17]. SIMD
and MIMD allow for better scaling and use of computational resources compared to
MISD, however, one prominent example of MISD computing are the Space Shuttle
flight control computers[17].

Figure 2.3: A visual representation of MISD[15]

Multiple Instruction Multiple Data

In computing MIMD is a technique used to achieve parallelism[17]. Machines using
MIMD have a number of processors that function asynchronously and independently
of each other[17]. Different processors may be executing different instructions on
different pieces of data, at any point in time[17] as can be seen in [Figure 2.4]. This
architecture is the most complex of the four mentioned, but also the most versatile in
terms of the amount and types of operations that it can perform and is as such also
the most used[17]. This architecture may be used in various application areas such as
simulation, modeling, and as communication switches[17]. Machines using MIMD can
be of two categories, either shared memory or distributed memory[17].
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Figure 2.4: A visual representation of MIMD[15]

2.1.2 Parallel Processing and programing

The definitions of Parallel Programming and Parallel Processing will be:

• Parallel Processing — When multiple cores work on different tasks at the
same time, with an intended performance gain.

• Parallel Programming — When programmers write programs that utilise
multiple cores by dividing tasks so they can be executed simultaneously.

Based on their descriptions and definitions in their sections later in the chapter.

Programs that utilise multiple cores to solve multiple tasks at the same time use parallel
processing to achieve this. This means that the program delegates tasks to the different
cores of the available Central Processing Unit (CPU). This speeds up the process of
solving these tasks, since the computer does not have to do them sequentially, but can
work on them simultaneously.

Much software nowadays require more computing power than a conventional sequential
CPU can offer[18]. A cost-efficient way to get around this problem is by using another
CPU with more cores in the multi-core system and implement an efficient way for the
different modules to communicate[18]. This is done so the work-load can be shared
efficiently, and to harness the full potential of the available CPU cores[18]. If this is
done effectively, better performance can be achieved than what could otherwise be
achieved with a single processor[18].

Development of multi-core CPU is highly being influenced by many factors. Some of
the most prominent are:
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• The sequential architectures of computers are reaching their physical limitations
due to constraints such as the laws of thermodynamics. Because of this the clock
frequency at which sequential CPUs can operate at is reaching it’s limit and other
ways of increasing processing power have to be used, such as connecting multiple
cores[18].

• Computational requirements are increasing in both scientific and business areas
of computing. Being able to utilise multiple cores in these fields are important
to be able to do them efficiently[18].

When programmers develop software for multi-core CPU they use parallel program-
ming to divide tasks into subtasks. Subtasks are essentially just smaller components
of a task that can be worked on, individually. These subtasks are then delegated to
different cores so they can be worked on simultaneously. By doing so, the amount of
time a task takes to complete is essential divided by the number of subtasks able to
run simultaneously, in the best case. In other cases some of the subtasks will have to
wait for other tasks to complete in order to finish and thus the gain is not linear.

2.1.3 Parallel Random Access Machine

Parallel Random Access Machine (PRAM) is a model for parallel computer architec-
ture, that uses a shared memory, which is shared among all CPU cores in the system.
Every CPU is said to be a Random Access Machine with a private local memory[19].
The more shared memory in the system, the more information can be shared between
the CPU cores. In turn, private memory is faster for the CPU to read from.

PRAM instructions comes in three different variations[19; 20]:

• Reading from the shared memory.

• Local computations in the private memory.

• Writing to the shared memory.

Furthermore, the CPU’s perform these instructions synchronous. To avoid conflicts
between the many CPU cores, it is important to specify how the PRAM-system ac-
cesses the shared memory. There are numerous models for how this should be done:
If only a single CPU core has read- and write-access to a memory cell at a time, the
system is called Exclusive Read, Exclusive Write (EREW); if several CPU cores can
read from the same cell, but only one can write to it at a time, it is called Concur-
rent Read, Exclusive Write (CREW). Some variations of these two models gives each
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CPU core ownership of a single cell, which only they can write to; if this is the case
the models are called Exclusive Read, Owner Write (EROW), and Concurrent Read,
Owner Write (CROW) respectively. It is also possible to use a model, that allows
simultaneous writes to memory cell, this is called Concurrent Read, Concurrent Write
(CRCW). CRCW comes in three different variations:

• Priority CRCW - CPU cores are assigned priorities, the one with the highest
priority is allowed to write.

• Arbitrary CRCW - A randomly selected CPU core gets writing permissions.

• Common CRCW - All CPU cores are allowed to write, but only if the value
they write is same.

The benefit of using PRAM, is that it allows for the possibility to share data-structures
in the memory upwards, so they can be calculated in parallel in their own core[21]. If
a Graphics Processing Unit (GPU), which typically has several thousands of cores1, is
being used. Compared to a regular high-end desktop CPU which only has four cores,
it is possible to parallelise large amounts of data, which is all contained in the same
memory.

2.1.4 Data Parallelism

Data Parallelism is when a single operation is performed on a set of data at the same
time, which means that a single operation e.g. the subtract operation can be performed
on multiple sets of data, without a multi-core CPU.

To do this operation a CPU would do each set sequentially, using cycles on each
operation, instead of doing it concurrently[23]. Which was seen in section 2.1.1.

2.1.5 Task Parallelism

Task Parallelism is the simultaneous execution, on multiple cores, of many different
instructions across the same, or different datasets. Task parallelism is achieved in
a multi-core processor environment where each processor executes a different thread
or process on the same or different data. Task parallelism focuses on distributing
tasks across different parallel computing cores. Task parallelism differs from data

1An NVIDIA GTX 980Ti as an example has 2816 cores[22]
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parallelism in that data parallelism works on shared data sets; an example of this
could be converting a character array to uppercase: Each character would get its
own thread or process that then all in parallel perform the conversion. By contrast,
since task parallelism is more suited for running independent instructions on the same
dataset without modifying the originals; this could for instance be getting the average,
the sum, the product, and the max-value of an array of numbers in parallel; since each
instruction is independent of the other, and does not modify the original array, they
can all run in parallel.[24]

2.2 Parallelism Method

In this chapter message-passing will be described, as both parallelism models described
in the sections 2.4.1 & 2.4.2 are based on this model, and message-passing works well
with the OO paradigm, and the functional paradigm.

2.2.1 Multi-Threading

A single, or multiple processes with a single thread makes it irrelevant to talk about
threading as there is only one thread to work on[25]. However, when working with
more than one thread per process things get somewhat more interesting. As seen in
[Figure 2.5], multi-threading is several concurrent paths or execution within a single
process that can be run concurrently on one CPU core, or in parallel on multiple cores
depending on the Operating System (OS)[25].
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Figure 2.5: A representation of threading in processes found in figure 4.1 of [25]

A thread contains the following properties[25]:

• Execution State.

• Saved context when not running.

• Execution stack.

• Static storage for variables.

• Access to the resources of the process the thread exists in.

These properties are for a single thread and each individual thread must have them[25].
Some of the benefits of programming using threads is the fact that it is much faster
to create threads than it is processes. It is also faster terminating and switching be-
tween threads. Another advantage of multi-threading is that the threads have the
same access to all shared data. Because they exist within the same process they can
communicate freely without having to involve the kernel[25].
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When implementing threading there are two main methods, it is either implemented
as user-level threads or as kernel-level threads. These have different advantages and
disadvantages. With only user-level threads the kernel is not at all aware of the threads
existence. This means that there are some specific advantages, one of which is that
scheduling can be customised to the pattern that best fits the application. Another
big advantage is that it is not necessary to have kernel access in order to switch from
thread to thread, thus avoiding the overhead of having to switch from user-mode to
kernel and back again[25].
The disadvantages of the user-level threads are that if one thread is blocked all threads
from that one process are blocked as well. This causes threads, that could still con-
tinue, to wait for the system calls to finish. Once the system calls have been finished,
the process can again be activated by the kernel which allows other threads to run.
It also limits the ability of utilising multiple cores because the kernel will only assign
one core to one process as seen in a in [Figure 2.6][25].

Figure 2.6: Visual representation of thread types found in figure 4.5 of [25].

For the kernel-level approach, the two disadvantages of user-level threads are taken
care of; meaning that if one thread is blocked, another thread from the same process
can continue running. It also opens up the opportunity to run threads from the
same process on different cores at the same time. This means that there is a trade-off
between the extra overhead and restrictions from kernel-level, and the blocking system
calls and lacking multiprocessing of user-level as seen in b in [Figure 2.6][25]. These
differences can be visualised in [Figure 2.6], for a better comparison between them.
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However, there is also the possibility of combining the two approaches. If combined
properly, it is possible to take advantage of the positives from both types while limiting
the drawbacks. This means that the programmer can choose to use one type or the
other based on which one suits the program part the best. If for instance the program
sequence contains multiple system or Input/Output (I/O) calls a kernel-level thread
might be of better use than a user-level thread to avoid interruptions for all threads
in the process. Likewise, if the sequence calculates already loaded data, user-level
threads can be of use to limit the overhead as seen in C in [Figure 2.6][25].

2.2.2 Message-Passing

In programming, a method for managing communication between multiple separate
processes called message-passing can be used. The way message-passing works is by
sending the processes a message and letting the infrastructure deal with running the
correct code. What distinguishes message-passing from other types of programming
is, that for each process exists separate data[26]. This means that if data needs to
be transmitted from one process to another, it is necessary to make a copy of the
data, to keep the processes internal memory separate. The reason for this is to ensure
encapsulation of the processes and their data, which makes data that is necessary for
a process immutable by another process[27].

In message-passing there are two main types, Multiple ProgramMultiple Data (MPMD)
and Single Program Multiple Data (SPMD), which are an extension to Flynn’s Tax-
onomy. In this project it will be the message-passing type SPMD that will be used,
to simplify the work related to writing or maintaining code. It is individual programs,
that is the focal point of this project and for that reason the SPMD type of parallel
programming is the most relevant to continue with based on the problem definition.

Within message-passing there are two main categories. Those are Asynchronous-
Message-Passing (AMP) and Synchronous-Message-Passing (SMP). In SMP the object
that sends a message can continue to be locked while it awaits an answer from the
object that receives the message[28]. This means, that data can be send with the
messages as a call-by-reference, as long as the system is not a distributed system, a
reference is a pointer to the data. Another advantage of SMP is, that it introduces
a guarantee that there cannot be done computations using old data that should have
been replaced before a given process was executed.[28].

This means that deadlocks can occur. A deadlock is a problem where several actions
are waiting for each other to finish, before they themselves can finish or continue. This
results in none of the actions ever being completed[29]. Another form of deadlock is
livelock, where two different processes switch states constantly in respect to each other,
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and hereby effectively never get any closer to completing their process[29].

In AMP after a request is sent, an answer will be given in return; through this, it can
be avoided that the object that has sent the request gets locked in a state where it
awaits an answer from the recipient. This means that, in contrast to SMP it needs
to create a new copy of the data that is being sent with the message to the receiving
object. The copying of data results in a bigger need for local storage, which can
be hard for the system to manage[30; 31]. AMP alleviates the deadlock problem, in
comparison to SMP. This is done with the cost of a more heavy data transmission
compared to just sending references to the data. This does however open up to a
new problem, the ability to do computations on old data. [28] Due to the increased
computational capacity and the safety behind avoiding deadlocks, more work will be
done regarding the AMP-type in this report. Some methods that implements and uses
message-passing is described in section 2.4.

2.3 Processing Units

This section will describe and discuss both CPU and Graphics Processing Unit (GPU)
to get an understanding of the fundamentals of these. Then there will be a comparison
between them highlighting which features from each make them the better choice, when
aiming for parallel computing. This will result in a choice of either the CPU or the
GPU, with a reasoning behind the choice.

2.3.1 Central Processing Unit

The CPU is the component responsible for interpreting and executing most of the
commands from the system. Principal components of a CPU include the Arithmetic
Logic Unit (ALU) that performs arithmetic and logic operations. Processor registers
that supply operands to the ALU and store the result of ALU operations, and a
control unit that fetches instructions from memory and executes them by directing
the coordinated operations of the ALU, registers and other components. CPUs from
the 80’s and later however are microprocessors, meaning that they are contained on a
single Integrated Circuit (IC) chip[32]. This interaction within the CPU can be seen
in [Figure 2.7].

An IC chip that contains a CPU may also contain memory, peripheral interfaces and
other components of a computer, such integrated devices are variously called micro-
controllers or System on a Chip (SoC)[34]. Modern computers employ a multi-core
CPU, which is a single chip containing two or more CPUs called cores.
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Figure 2.7: Central Processing Unit[33]

There are generally two types of microprocessors: General-Purpose microprocessors
and dedicated microprocessors. General-Purpose microprocessors, such as the Pen-
tium CPU can perform different tasks under the control of software instruction[35].
General-Purpose microprocessors are used in all personal computers[35]. Dedicated
microprocessors, also known as Application-Specific Integrated Circuit (ASIC)s, on
the other hand, are designed to perform just one specific task, though not for the x86
architecture[35]. An example could be the embedded microprocessor in a cell phone
which does nothing besides controlling the operation of the phone[35].

2.3.2 Graphics Processing Unit

AGPU is a dedicated parallel processor optimised for accelerating graphical computations[36].
The GPU is designed to perform the many floating-point calculations essential to 3D
graphics rendering[36]. Modern GPUs are massively parallel, and are fully programmable[36].
The parallel floating-point computing power found in a modern GPU is several times
higher than a CPU[37]. The individual processors of the GPU are grouped into mul-
tiprocessors that share instruction decoder, memory access and a small amount of
on-chip memory[38].
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2.3.3 Central Processing Unit versus Graphics Processing Unit

To decide between using a standalone CPU or a GPU, it is necessary to understand
which features stand out between the two. CPUs are low latency low throughput
processors and GPUs are high latency high throughput processors[38]. GPUs can
have more ALUs for the same sized chip, compared to a CPU, and therefore run
more threads of computation[38]. When managing threads on a GPU some things to
consider are how to[38]:

• Avoid synchronisation issues between so many threads.

• Dispatch schedule, cache, and context switch 10.000s of threads.

• Program 10.000s of threads.

GPUs use stream processing to achieve high throughput and the high latency tolerance
results in a lower cache requirement[38]. Having less transistor area for cache, by
having a higher latency tolerance, results in more area for more computing units[38].

2.3.4 Why Central Processing Unit?

The CPU is capable of running many types of software and has in more recent years
provided multiple cores to process data in parallel[37]. On top of this the CPU is a
low latency low throughput processor[38]. Architectural advances for the CPU such
as branch prediction, out-of-order execution, and super-scalar have been responsible
for a performance improvement[37].

2.4 Parallelism Models

After delimiting to task parallelism it is necessary to understand how parallelism
functions on machine-level, hence there is a need to understand multi-threading. To
understanding the further abstractions for the machine-level parallelism, it is necessary
to take a look at the implementations and problems of parallelism models, two of which
will be described in this chapter.
The two models will be the actor model and Communicating Sequential Processes
(CSP) and based on these models the project will be delimited to one of them and the
problems of that chosen model. These models have been chosen as the actor model
works well with the OOP paradigm, as actors can be viewed as objects and CSP with
concurrency. These models are base for/based on message-passing respectively.
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2.4.1 Actor Model

The actor model is a mathematical model that treats actors as the universal primitives
of digital computation. One of the advantages of the actor model is that an actor
encapsulates data and behaves like objects in the OOP paradigm. This means that
there is a separation of the interface and the representation of an actor. When an
actor receives a message, it can concurrently make three types of local decisions[39]:

• Send messages to (unforgeable) addresses of actors that it has.

• Create new actors.

• Designate how to handle the next message it receives.

The actor model can be used as a framework for modelling, understanding, and rea-
soning about a wide range of concurrent systems[39]. Actors interact with each other
through one actor sending a message, the messenger, to another actor, the target[40].
An actor has a name, an address that is unique and a behaviour which determines
its actions. It is worth noting that an actor’s behaviour can change depending on
its local state. Each actor in a system carries out its own actions concurrently and
asynchronously with other actors. In order to send a message to an actor, the actor’s
name must be used. This name cannot be guessed, but may be communicated in a
message. The name of the actor can be implemented in a variety of ways[39]:

• Memory or disk addresses.

• Network addresses.

• Email addresses.

In the actor model a message’s path from one actor to another or delays it may
encounter are not specified. Therefore the order in which messages arrive is inde-
terminate. The actor model supports indeterminacy because the reception order of
messages can affect future behaviour of the actors.

Some semantic properties of the actor model are[27]:

• Encapsulation of state.

• Atomic execution of a method in response to messages received.

• Fairness in the scheduling of actors and the delivery of messages between these.
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• Location transparency which enables mobility and distributed execution.

The actors in the actor model behaves as objects sending and receiving messages, and
performing actions based on the messages. The actors can only send messages to other
actors they already know.

2.4.2 Communicating Sequential Processes

CSP is an in-process algebra, and is based on the notion of message passing through
channels. Channels are a model for inter-process communication and synchronisation
through message passing; due to their synchronous nature, messages sent through
channels will block, and the sender waits, until the receiver is ready to accept the
message. This is sometimes also referred to as rendezvous behaviour [41].
Processes in CSP are inherently anonymous, as the only means of communicating with
processes is through named channels[41]. The communication can happen as in the
following examples

One to One
A single process sends data onto a channel while another process pulls that data off
the channel[41].

One to Many
One process puts data onto a channel that multiple processes listen on; they can then
pull it off the channel. The first process that pulls the data is the only one that can
work with it. After the data has been pulled no other process can pull that data from
the channel, which comes down to who pulls the fastest from the channel. A low-tech
example of this could be workers pulling items off a shelf; once a certain item has been
pulled off, the other workers will never see it[41].

Many to One
Many different processes can feed data into the channel and then a single process will
accesses this data[41].

Many to Many
Many different processes feed data into the channel and many processes that can access
this data. The access works the same way as for the one to many. Once the data has
been pulled it cannot be accessed by other processes[41].

The amount of data the sender-process can put upon the channel is determined by
a buffer. Before the process can put data onto the channel it has to check whether
or not there is room for it. As an example; if the amount of data that can be on a
channel is determined by n′. Then the sender-process will check whether or not there
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is n′ amount of data in the channel[41].
In the case that there is equal or more data on the channel the sender-process will
simply wait with putting more data onto it. One could see the buffer as a sort of
shelf. The sender-process puts boxes of data onto this shelf for the worker-processes
to take off and handle. In case the shelf is full, the sender-process will go into wait
mode before putting new boxes onto the shelf[41].

In the previous two subsections two models of parallelism in computing was looked
into the actor model and CSP. The outcome of this research and analysis was two
methods of message passing that both fit the target of this project. The actor model
had properties that made it the better fit for the Quantum language. Namely that
actors are objects them selves which went along with the premise that everything in
Quantum would be objects. Where as the processes in CSP were inherently anony-
mous which would be a difficulty to be overcome in the later process.
OOP languages revolve around modelling real things as objects, the actor model in
section 2.4.1 is a good way of utilising parallel computing. This is due to the fact that
each actor in an actor model in itself is an object. Therefore this report will work with
implementing the actor model into a new language.

2.5 Problem Statement

Previously in the chapter some choices regarding the outcome of the project and lan-
guage was made leading to a concrete problem statement:

Could multi-core processing become a more streamlined experience by implementing
the actor model in a manner invisible to the developer?

22



Chapter 3

Language Design

In this chapter, various possible and considered design elements for Quantum will be
described and chosen based on the description of the language design elements.

3.1 Readablility & Writability

In this section readability and writability will be described; followed by an explanation
of how these are prioritised in relation to the language design of Quantum. This is
done to give a better understanding of why some compromises between read- and
writability were made with some design elements. The following paragraphs are based
on source [33].

Readability

Readability refers to the ease with which programs can be understood. One can write
hard-to-understand code in any language; but a language’s characteristics can make
it either easier, or more difficult, to write easy-to-understand code. If there are too
many basic constructs or features, the program will likely be harder to read, as the
reader might know a different subset of the language than the programmer. On the
contrary, if there are very few, as in the Assembly language, the code can be hard
to read because what may be a single operation, could require several instructions to
represent it. Other ways of making it more, or less readable is feature multiplicity
or, operator overloading; depending on how it is used. Feature multiplicity is the
ability to do the same operation in multiple ways, an example could be the looping
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constructs while, do-while, and for. Operator overloading can aid in readability if it
is used with discretion, but can lessen readability if used unwisely, e.g. by using + as
a comparison operator. Adequate facilities for defining data types and structures can
also aid readability. Standard data types should be adequate too, an example would
be the early versions of C in which there were no boolean type, forcing the programmer
to use an integer to represent true and false. An example of using special keywords
to increase readability could be the beginning/end of a compound statement, in this
case a loop, where using curly brackets or an end loop. A good choice of special words
helps in regards to the form and meaning of the program, e.g. using if and not glorp.

Writability

Writability is a measure of how easily a language can be used to develop programs for a
chosen problem domain. The support for abstraction allows the programmer to define
and use complicated structures/operations in ways that allow implementation details
to be ignored, which is a key concept in modern language design. The expressivity is
enhanced by the presence of powerful operators that make it possible to accomplish
a lot in a few lines of code. The classic example is APL, which includes so many
operators that it is based upon a character set larger than the one found on a typical
keyboard. By contrast, Assembly languages typically lack expressivity in that each
operation does something relatively simple, which is why a single instruction in a
high-level language could translate into several instructions in assembly language.

Readability & Writability in Quantum

In Quantum it has been chosen to focus more on a mix of readability and writability,
without the two clashing, so that both new and experienced programmers will find it
understandable and useful. A summation of the language evaluation criteria in regards
to readability and writability can be viewed in [Figure 3.1].

To accommodate this there have been some cases where readability has been down-
prioritised for an increase in writability due to the readability suffering a minor loss,
while writability instead gained a major increase. This has also been applied the other
way around.
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Figure 3.1: Language Evaluation Criteria[33]

3.2 Standard Data Types

This section will describe the standard data types that was considered to be included
in Quantum. There will be arguments for and against the types as they are being
described, along with an explanation of decisions as to what will be in- or excluded in
Quantum.

Numbers

Natural numbers could be represented either by a fixed size integer type or arbitrary
large numbers, with the fixed size integer having greater performance. When thinking
about integers it is worth considering using or at least having an unsigned version to
be able to work with even greater positive numbers, unless bigints are used. Decimal
numbers are also necessary as they allow the programmer to work with real num-
bers, for this both floating point and double-precision floating point numbers (floats
and doubles for short) could be used. As floats and doubles have precision limitations
when working with long decimal numbers, another consideration for representing more
precise numbers could be a type such as decimal[42]. With a precision of 28-29 signif-
icant digits in decimal compared to the 7 or 15-16 of floats and doubles[42; 43].

In Quantum there are no explicit different number types, such as integer and floats.
Instead there is only the type Number, though behind the scenes it covers both integers
and floating point numbers. The integer value starts off being the default word size
of the machine, either 32-bit or 64-bit, while the floating point numbers are 64-bit,
hereby being double precision floating point numbers. In Quantum an integer scales
as needed, meaning that if a 64-bit integer isn’t big enough to represent the entire
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number an even bigger integer value will be assigned by use of a bigint system, which
is an arbitrary-precision integer. Quantum uses implicit number conversion, so one
can add an integer and floating point value together and the resulting number will be
a floating point. Taking this into consideration in regards to bigint, if the programmer
tries to add a sufficiently large bigint, and a floating point number a BadArithmetic
error, called badarith in Erlang, will be thrown, as the floating point cannot be larger
than 64-bit[44].

Characters

Allowing the programmer to work with text is necessary if they intend to communicate
with humans, or other systems in a useful way. To do this, strings were considered to
represent text in the form of alphabetic characters and numbers. When referring to a
character, it is necessary to consider if there should be more than one type to represent
text in Quantum. A single character could be represented as either a character or a
single-character string, the latter resulting in having one less type in the language at
the cost of a slightly larger overhead.

In Quantum it has been decided not to have several different ways to represent al-
phanumerical characters, such as text and single characters. To increase the writabil-
ity, while losing some readability when trying to represent single-character values, it
has instead been decided to only have strings, meaning single characters are repre-
sented as single-character strings. This leads to having a higher orthogonality due to
the lower amount alphanumeric representations.

Boolean

Boolean were considered as it would make it more intuitive to work with logic oper-
ations such as if-statements. The Boolean expressions true and false were considered
along with other similar keywords such as yes and no and whether or not there should
be more than one keyword pair. It was however chosen to only have one keyword pair,
to increase the writability and the orthogonality, while only losing a minor part of the
readability in a very few special cases. The keyword pair chosen for Quantum will be
true and false.
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Types Without a Value

In Quantum it has been decided to include Unit as a type. Unit is special, in that it’s
a type without a value, and unlike null it is not a valid value in any other type. Unit is
orthogonally useful as it allows writing functions without a return value without having
to both define functions that don’t return, and functions that do return; instead the
function always returns, and can instead return a "nothing" value called Unit.

3.3 Immutability

This section is uses source [45].

Immutability is one of the key concepts in functional programming. In functional lan-
guages immutability is present in two ways; variables and data structures. Variables
in functional languages are replaced by symbols and values that cannot be changed.
This decreases writability as programmers cannot reuse variables, in turn forcing them
to either use more variables or find a workaround. Immutability does however increase
readability as the variables are never changed after they have been declared. As im-
mutability influences the read- and writability of the language, it is also an important
language design choice to consider in regards to order design choice. Having im-
mutability is important in regards to parallelism as the programmer can avoid race
conditions and deadlocks, as the data is never changed after being declared. Having
immutable data will change the way in which the chosen data structures will be used.
For example, one cannot change a record and would instead return a new record with
the modified data.

In Quantum immutable data has been chosen to avoid race conditions, deadlocks and
starvation, as the language is focused on parallelism. In parallelism these are some of
the worse problems, and it is therefore important to avoid these.

3.4 Data Structures

The data structures that have been considered to be included in Quantum will be
described in this section. There will be arguments for and against the structures as
they are being described. This is done to illustrate the thought process behind the
decisions of what structures to include in Quantum.
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Array

The strengths of an array lies in its access speed and use of memory. The programmer is
not able to change the size of an array after it has been defined, but if the programmer
is aware of how many indices are needed before defining it, this limitation will not be
a significant problem[46]. The reason for the fast accessing speed is that the array is
placed sequentially in the memory[46]. But due to the array’s static size, it cannot be
used for data sets with varying sizes.

List

The list allows adding or removing of elements and thereby allowing for a more flexible
collection type than an array[47]. The programmer can access elements by their integer
index, the position in the list, and search for elements in the list[47]. A benefit with the
list is that the programmer will not have to take the size of the list into consideration
and they can ignore the underlying implementation because of this.

Matrix

The matrix data structure is either made up of an array of arrays, or a two-dimensional
array. The array of arrays can be jagged, meaning that not all of the arrays must have
the same length, while the two dimensional array does. The matrix data structure is
commonly used to structure large datasets when working with scientific calculations
and matrices. This would give the programmer a common generic structure to use
instead of forcing them to implement their own version of a matrix.

Record

Records, usually called struct in the C family of programming languages, were con-
sidered for the language as they allow the programmer to group different kinds of
data or create new data structures[48]. The array, list, and matrix only allow for one
type grouped together for each assigned collection, i.e. it is not possible to have a list
containing two lists of integers and strings.
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Data Structures in Quantum

In Quantum it has been decided to use lists, as they can be built immutably by
creating a new list from the old one using modified data. An obvious implementation
of a list is the singly linked list, which lends itself well to recursive algorithms for easy
manipulation.

3.5 Scope

One of the main reasons for have a scope is to keep variables in different parts of the
program distinct from each other. Since there are only a small number of short variable
names, and programmers share naming conventions of the variables. When using static
scoping a variable always refers to its top-level environment. Static scoping is standard
in most modern programming languages. Static scoping makes it more simple for the
programmer to make modular code and reason about it, since the variable is defined
in the top-level environment. On the contrary, using dynamic scoping, each identifier
has a global stack of bindings. Dynamic scoping cannot be predicted at compile time,
unlike static scope where it is possible just by looking at the program, which is why
it is called dynamic scoping.

Static scoping is used in Quantum to ensure better one-to-one code translation between
Quantum and Elixir, as Elixir uses static scoping. If dynamic scoping had been used,
a way of translating the dynamic scope to a static scope would be needed, one way to
do this would be by declaring variables globally.

3.6 Control Structures

In a programming language a control structure determines the order in which state-
ments are executed[49]. There are three major control structures: Sequential ex-
ecution, selection statement and iterative statement, these are the most common
structures[49]. The sequential execution is when statements are executed one after
another in order.
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Selection Statement

A selection statement allows for execution path selection, most commonly used for two-
way decision making, which is typically performed using an if-then-else structure[49].
Execution path selection is not forced to be only two-way decisions, but can be multiple
decisions depending on the programming language. A way to allow two-way statements
to express multiple selection statements could be by nesting the two-way statements,
an example of this would be a nested if-statement. These two-way statements can
be generalised to be multiple-selection statements which allow one of any number of
statements to be selected. An example of a multiple-selection statement would be a
switch-case statement where it is possible to to choose one of many different cases.

Iterative Statement

Iterative statements, often referred to as loops, are the ability to execute statements
zero to many times. There are several different types of iterative statements, such as,
for, while and do-while. Each has their own strengths and weaknesses depending on
how the programmer needs to iterate. Using a do-while would be used to ensure that
the enclosed code would be run at least once, compared to the while whereas it might
not execute the enclosed code, if the statement is not true.

Control Structures in Quantum

In Quantum both if-then-else and match are used for multiple decisions. Match corre-
sponds to a switch-case with added pattern matching. In terms of iterative statements,
only one way of creating loops has been used, this being for. The reasoning for only
having a single iterative statement is that it is not strictly necessary to have loops in
Quantum as immutable data would make updating looping conditions difficult.

3.7 Function Structure

Functions are an important part of Quantum, as they introduce ways of solving prob-
lems regarding how code can be modularised, as well as how values are moved between
these modules. It is also considered whether or not the ability to have multiple returns
from functions should be possible.
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Pass-By-Reference

Pass-by-reference copies the address of the function’s parameter into the scope of the
function, rather than the parameter itself. This results in an efficient method of value-
passing, which lets the programmer access its value without having to copy the data
as would be the case in pass-by-value[50].

Higher Order Functions

Higher order functions, allow the programmer to pass functions as input to other
functions, this allows for the creation of more generic functions. A simple example in
ECMAScript as follows:

1 function apply2 (f, a, b) {
2 return f(a, b);
3 }
4

5 var result = apply2 (Math.pow , 2, 4); // same as Math.pow (2, 4);

This function apply2 takes a function and two arguments, and returns the application
of said function on those two arguments. This can be expanded to more complex
use-cases.

Another use of higher order functions, is the ability to create and return new functions.
A simple ECMAScript example:

1 function printerMaker (name) {
2 return function () {
3 console .log("Hello , " + name + "!");
4 };
5 }
6

7 var mePrinter = printerMaker ("Niko");
8 mePrinter (); // prints "Hello , Niko !"

Combining these features can lead to interesting results, where the output function
from one function is the input of another.
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Multiple Return

Having multiple return can enhance the readability as the programmer can return the
result as soon as it is known. An example of multiple return from Go could be:

1 package main
2 import ‘‘fmt ’’
3

4 func vals () (int , int) {
5 return 1, 2
6 }
7

8 func main () {
9 a, b := vals ()

10 fmt. Println (a)
11 fmt. Println (b)
12 }

Function Structure in Quantum

Pass-by-reference is used as there is no need to modify the data, due to how Quantum
uses immutable data to combat some of the problems related to parallelism.

3.8 Static/Dynamic Types

Dynamically typed languages perform type checking at run-time, while statically typed
language perform type checking at compile-time[51], This means code written in a
dynamically typed language can compile even if it contains type errors that will prevent
the code from running properly[51]. If statically typed code contains errors at compile-
time, it will keep failing until these errors have been fixed[51]. Additionally, variables
with a previously assigned type, can be overwritten with a value with a completely
different type; this can create issues, as it can lead to unforeseen results.

Static types have been chosen for Quantum to ensure type checking at compile time.
This is to ensure that no type changes take place, and if it does it alerts the user at
compile time.
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Chapter 4

Syntax & Semantics

4.1 Grammar

In this section the grammar for our language will be described, for the raw version of
the grammar see appendix C.

4.1.1 Context-Free Grammars

A grammar consists of a collection of substitution rules, also called productions. Each
of these rules appear as a line in the grammar, comprising a symbol and a string
separated by an arrow. In [Figure 4.1] an example of a Context-Free Grammar (CFG)
grammar is shown to give a better understanding of how a CFG is made[52]. The
notation of Grammars in this report will be described here:

Notation

In this grammar description the following notation is how the symbols and terms are
shown in the grammar.

• Non-terminal: <non-terminal-name>

Non-terminals are a part of the grammar that does not terminate.

• Terminal: ‘terminal name’
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A⇒ 0A1⇒ 00A11⇒ 000A111⇒ 000B111⇒ 000#1111

Terminals are a part of the grammar that terminates.

• Special Characters:
ε | ::=

ε is a symbol that allows the non-terminals to be empty.
The | symbol is representing an alternative of a description for the previous non-
terminal.
The ::= symbol represents that the non-terminals/terminals on the right side of the
symbol, can be abbreviated to the non-terminal on the left side of the symbol.

〈A〉 ::= ‘0’ 〈A〉 ‘1’
| 〈B〉

〈B〉 ::= ‘#’

Figure 4.1: Context-Free Grammar[52]

The non-terminal symbols are often represented by uppercase letters. The terminals
are often lowercase letters, numbers, or special characters. One non-terminal is des-
ignated as the start variable and usually occurs on the left-hand side of the topmost
rule. As seen in figure [Figure 4.1], A is the designated start variable. As an example,
the grammar in [Figure 4.1] generates the string 000#111. The sequence of substitu-
tions to obtain a string is called a derivation and a derivation of string 000#111 in the
grammar in [Figure 4.1] is[52]:

This is achieved by following the rules of the grammar in [Figure 4.1], substituting the
non-terminals to achieve the string. Another way to represent the same information
pictorially can be done using a parse tree. An example of a parse tree is shown in
figure [Figure 4.2][52].
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Figure 4.2: Parse tree for 000#111 in the grammar from [Figure 4.1][52]

This can be done to visualise CFGs, and verify that the string is achievable using the
rules of the grammar[52].

4.1.2 Ambiguity

Sometimes a grammar can generate the same string in several different ways. Such
a string will have several different parse trees and will thus have different meaning,
as the order in which the substitutions are performed will vary. This result may be
undesirable for certain applications, such as programming languages, where a given
program should have a unique interpretation. If a grammar is called ambiguous if
it generates the same string in several different ways. As an example, consider the
grammar as shown in [Figure 4.3]:

〈EXPR〉 ::= 〈EXPR〉+〈EXPR〉
| 〈EXPR〉×〈EXPR〉
| ‘(’〈EXPR〉‘)’
| ‘a’

Figure 4.3

This grammar generates the string a + a x a ambiguously, where two different parse
trees can be observed in figure [Figure 4.4] below[52].
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Figure 4.4: The two parse trees for the string a + a x a in the grammar from [Figure 4.3][52]

This grammar does not capture the usual precedence relations and may group the +
before the x or vice versa. When saying that a grammar generates a string ambiguously,
it means that the string has two different parse trees, not two different derivations.
Two derivations may differ merely in the order in which they replace non-terminals
yet not in their overall structure[52].

4.1.3 Backus-Naur Form

Backus-Naur Form (BNF) is a formal mathematical way to describe a language, de-
veloped by John Backus and Peter Naur, to describe the syntax of the Algol 60 pro-
gramming language[53]. Formally,BNF grammars consists of a set of tokens that are
divided into terminals, which are items that can appear in the language, and non-
terminals, which can be expanded into one or more terminals or non-terminals[54].
Furthermore, there is a set of production rules mapping a non-terminal to a sequence
of tokens. This grouping can be expressed using parentheses and choices in a group
are separated by a vertical bar. A parse tree can then be generated by starting with
an initial start-token and applying any rules until only terminals are left[55].

4.1.4 Extended Backus-Naur Form

Extended Backus-Naur Form (EBNF) is, as BNF, a notation for formally describing
syntax.BNF has since its creation in the 1950’s been improved into what is commonly
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referred to as ExtendedBNF, of which there are several kinds. Among such extension,
Augmented Backus-Naur Form (ABNF) is an Internet RFC and ISO/IEC defines a
common uniform precise EBNF syntax[55]. All of these common extension are for
practical purposes, as the various EBNF grammars can also be represented asBNF
grammars[55].

4.1.5 Comparison

SinceBNF and EBNF both use terminals and non-terminals to set up the grammar for
the language, it will not be used as a logical delimitation for the project, as there is no
distinct difference in that feature. The EBNF allows for a non-terminal to call a non-
terminal from a higher abstraction-level, and theBNF does not allow for this feature.
The compilation time taken for the EBNF will increase as the is a higher number of
calculations needed, caused by the multiple jumps to higher abstraction-levels, this
has lead the group to choseBNF to keep compile-time to a minimum[52].

4.1.6 Backus-Naur Form Grammar

Regular Expression Representation

Regular expressions for accepted characters in Quantum.

〈string-lit〉 ::= ‘"(\.|[^"])*"’

〈identifier〉 ::= ‘[a-zA-Z_][a-zA-Z0-9_’-]*’

〈atom-def 〉 ::= ‘#[a-zA-Z_][a-zA-Z0-9_’-]*’

〈num-lit〉 ::= ‘[0-9]+’

〈hex〉 ::= ‘0x[0-9A-Fa-f]+’

〈bin〉 ::= ‘0b[01]+’

The regular expressions is the character-symbols allowed in the terminals mentioned
above, the regular expressions are for direct implementation of the language.
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Top-Level Definitions

The top level rules for an acceptable code, the compiler will accept.

〈program〉 ::= ‘module’ 〈module-name〉 ‘;’ 〈top-level-cons〉

〈module-name〉 ::= 〈identifier〉 ‘.’ 〈module-name〉
| 〈identifier〉 ‘;’

〈top-level-cons〉 ::= 〈module-import〉 〈top-level-cons〉
| 〈actor-def 〉 〈top-level-cons〉
| 〈data-struct-def 〉 〈top-level-cons〉
| ε

〈module-import〉 ::= ‘import’ 〈module-name〉 ‘;’

〈actor-def 〉 ::= ‘class’ 〈type-def 〉 〈actor-body-block〉
| ‘class’ 〈type-def 〉 ‘<-’ 〈type-defs〉 〈actor-body-block〉
| ‘object’ 〈type-def 〉 〈actor-body-block〉
| ‘object’ 〈type-def 〉 ‘<-’ 〈type-defs〉 〈actor-body-block〉

In the top-level definition the instantiation of the program. This is followed by the
class and object definitions, which is done through the actor definition.

Type Name Definitions

The abbreviation of types from the Top-Level Definitions, setting the acceptable type
definitions for the language the compiler will accept.

〈type-defs〉 ::= 〈type-def 〉 ‘,’ 〈type-defs〉
| 〈type-def 〉

〈type-def 〉 ::= 〈identifier〉 ‘of’ 〈type-params〉
| 〈identifier〉

〈type-params〉 ::= 〈type-param〉 ‘,’ 〈type-params〉
| 〈type-param〉

〈type-param〉 ::= ‘(’ 〈type-def 〉 ‘)’
| 〈identifier〉
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〈actor-body-block〉 ::= ‘{’ 〈actor-body-def 〉 ‘}’
|

〈actor-body-def 〉 ::= 〈message-def 〉 〈actor-body-def 〉
| 〈message-def 〉
| ε

〈message-def 〉 ::= define 〈type-def 〉 〈pattern-def 〉 ‘=’ 〈block〉

〈pattern-def 〉 ::= 〈literal〉
| ‘(’ 〈typedVal〉 ‘)’

〈typedVal〉 ::= 〈type-def 〉 〈identifier〉

Data Structure

Defines the data structures in the language and what it should contain.

〈data-struct-def 〉 ::= ‘data’ 〈type-def 〉 〈data-body-block〉
| ‘data’ 〈type-def 〉 〈data-body-block〉 ‘<-’ 〈type-defs〉

〈data-body-block〉 ::= ‘{’ 〈field-defs〉 ‘}’
| ε

〈field-defs〉 ::= 〈typedVal〉 ‘;’ 〈field-defs〉
| ε

As seen above the data structure definition uses the keyword data followed by a type
definition and a data-body-block that is either empty or contains one or more field
definitions.

Module

This describes what acceptable code blocks in the code can contain. An example
would be a function definition, which would contain the func keyword followed by an
optional identifier with function arguments enclosed in parentheses. A block, which
contains one or more statements, is assigned to the function definition.

〈block〉 ::= ‘{’ 〈stmts〉 ‘}’
| 〈stmt〉
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〈stmts〉 ::= 〈stmt〉 〈stmts〉
| 〈stmt〉

〈stmt〉 ::= 〈expr〉 ‘;’
| 〈valDef 〉 ‘;’
| 〈binaryOperation〉 ‘;’

〈valDef 〉 ::= ‘val’ 〈identifier〉 ‘=’ 〈expr〉
| ‘val’ 〈typedVal〉 ‘=’ 〈expr〉

〈funDef 〉 ::= ‘func’ 〈identifier〉 ‘(’ 〈funArgs〉 ‘)’ ‘=’ 〈block〉
| ‘func’ ‘(’ 〈funArgs〉 ‘)’ ‘=’ 〈block〉

〈funArgs〉 ::= 〈typedVal〉 ‘,’ 〈typedVal〉
| 〈typedVal〉

〈expr〉 ::= 〈if-expr〉
| 〈for-compr〉
| 〈match-expr〉
| 〈ask-stmt〉
| 〈identifier〉
| 〈funCall〉
| 〈fieldCall〉
| 〈metodCall〉
| 〈literal〉

Message-passing to actors happens through the tell and ask commands. Tell simply
sends a message to an actor without expecting anything in return, while when ask
sends a message to an actor it expects some kind of a result or something in return.

〈tell-stmt〉 ::= ‘tell’ 〈ne-args〉 ‘about’ 〈ne-args〉 ‘;’

〈ask-stmt〉 ::= ‘ask’ 〈ne-args〉 ‘about’ 〈ne-args〉 ‘;’

As is inferred by the way the tell and ask statements are written, the way in which
their actions are performed and what they expect in return is naturally understood.
Making it more intuitively for the user to use it.

Control Structures

The general style across control structures in Quantum is made to be as similar to
each other as possible, to improve the read/write-ability.
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An if-expression works much like C# or Java if-statement, except it does not have a
traditional else branch, instead all possible if-branches are written in full within the
if-block

〈if-expr〉 ::= ‘if’ 〈if-block〉

〈if-block〉 ::= ‘{’ 〈if-stmts〉 ‘}’
| 〈if-stmt〉

〈if-stmts〉 ::= 〈if-stmt〉 〈if-stmts〉
| 〈if-stmt〉

〈if-stmt〉 ::= 〈stmt〉 ‘then’ 〈expr〉

A match-expression is like the switch from C#, except it matches the structure of
data, unlike the if-expression, the match-expression works on things that are not just
booleans.

〈match-expr〉 ::= ‘match’ ‘(’ 〈expr〉 ‘)’ 〈match-block〉

〈match-block〉 ::= ‘{’ 〈match-stmts〉 ‘}’
| 〈match-stmt〉

〈match-stmts〉 ::= 〈match-stmt〉 〈match-stmts〉
| 〈match-stmt〉

〈match-stmt〉 ::= 〈patternDef 〉 ‘then’ 〈expr〉

A for-comprehension works much like the for-each loops in c#, except it allows multiple
collections to iterate over the nested loop.

〈for-compr〉 ::= ‘for’ 〈for-block〉 ‘do’ 〈block〉
| ‘for’ 〈for-block〉 ‘yield’ 〈block〉

〈for-block〉 ::= ‘{’ 〈for-stmts〉 ‘}’
| 〈for-stmt〉 ‘;’

〈for-stmts〉 ::= 〈for-stmt〉 〈for-stmts〉
| 〈for-stmt〉

〈for-stmt〉 ::= 〈identifier〉 ‘in’ 〈expr〉
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Literals

Defines all the literals in the language.

〈list〉 ::= ‘[’ 〈args〉 ‘]’

〈ne-args〉 ::= 〈expr〉 ‘,’ 〈ne-args〉
| 〈expr〉

〈args〉 ::= 〈ne-args〉
| ε

〈dec-lit〉 ::= 〈num-lit〉 ‘.’ 〈num-lit〉

〈literal〉 ::= 〈string-lit〉
| 〈num-lit〉
| 〈dec-lit〉
| 〈atom-def 〉
| 〈atom-def 〉 ‘(’ 〈args〉 ‘)’
| 〈list〉

4.2 Semantics

In this chapter the general semantic methods used in the semantic analysis will be
defined.

4.2.1 Semantic Method

For this project Structural Operational Semantics have been used to formally define
the meaning of a writing in the language. When describing a language using structural
operational semantics there are two methods known as small- and big-step semantics
that can be used, where small-step is the best to describe the problems concerned with
parallelism, as in big-step semantics there is no way of describing deadlocks and other
known problems in parallel programming [56].

The uninteresting transitions are similar to the ones from the Transition and Trees
book [56], consisting of only one major difference. These semantics, formation rules,
and transition rules can be viewed in Transition and Trees[56], where the statements
are described.
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For one of the more interesting transitions in Quantum is the if-statements. the CFG
for If-statements in Quantum can be seen in [Figure 4.5]:
The if-expr iterates through all the results of all the if-stmts in the if-block. The

〈if-expr〉 ::= ‘if’ 〈if-block〉

〈if-block〉 ::= ‘{’ 〈if-stmts〉 ‘}’
| 〈if-stmt〉

〈if-stmts〉 ::= 〈if-stmt〉 〈if-stmts〉
| 〈if-stmt〉

〈if-stmt〉 ::= 〈stmt〉 ‘then’ 〈expr〉

〈stmt〉 ::= 〈expr〉 ‘;’

〈expr〉 ::= 〈if-expr〉
| ...
| 〈literal〉

Figure 4.5: Grammer for If-statements

if-stmts is recursively calling itself until it meets an end where it is only a single
if-stmt.

This semantics will be checked in an evaluation context. The environment-store model
will contain the environments for variables and procedures denoted envv for the vari-
able environment store-model and envp for the procedure environment store-model.
On a run-time stack we need to keep track of the bindings that are in effect, this can
be achieved by introducing the run-time stack envl, which is a list of pairs of (envv,
envp), the list of pairs denotes all lists whose elements belong to the set envv × envp.
The set of stores is denoted sto The transition for this system will in all cases be a
bit alike to what is know from the C -family. The semantics for these if-statements
configuration will be:

• 〈< if − stmt >, sto, envl〉, which is an intermediate configuration, where the
if-stmt may contain a boolean value.

• 〈sto, envl, which is a terminal configuration

The transition rules for a skip statement can be seen in [Figure 4.6] The transition
rules for the if-statements can be seen in [Figure 4.7].
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[skip]〈skip, sto, envl〉 ⇒ (sto, envl)

Figure 4.6: Skip Statement

If-True
〈if < stmt > then < expr >, sto, envl〉 ⇒ 〈< stmt >, sto, envl〉

if envv, sto `< stmt >→<stmt> tt where envl = (envv, envp) : env′
l

If-False
〈if < stmt > then < expr >, sto, envl〉 ⇒ 〈skip, sto, envl〉

if envv, sto `< stmt >→<stmt> ff where envl = (envv, envp) : env′
l

Figure 4.7: If-Statement

44



Chapter 5

Parser

The parser is responsible for creating a syntax tree from a set of rules given an input
of tokens typically generated by a lexer1. The syntax tree is then used to determine
various things about the program, such as scope rules, the layout of various data
structures, etc.[57].

5.1 Recursive Descent Parser

A recursive descent parser consists of several mutually recursive procedures, which
work together to parse an input string[57].

5.1.1 Parser Generator

This is often done with tools that directly translate a CFG to a corresponding recursive
descent parser. Such a tool is usually called a parser generator or compiler-compiler.
The downside of a parser generator is the need for an external tool removed from the
language in which the bulk of the work on the parse tree will be performed. The upshot
on the other hand is the flexibility. An external tool, if constructed correctly, could
generate parsers for many different languages, giving the user ample flexibility[57].

1also called a scanner or tokeniser
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5.1.2 Parser Combinator

The parser combinators allow creating recursive descent parsers by way of combining
the recursive procedures, letting the user create larger parsers by piecing smaller ones
together. Unlike parser generators, they are also typically made as a library for the
language in which it’s used; as a result it’s then possible to utilise all the strengths
and utilities of the language in which it’s used, such as putting parsers into collection,
or specifying procedures that output different parsers depending on their input. This
of course also comes with the downside of having to adhere to the given language’s
limitations when it comes to doing various things[58].

5.2 Implementation

5.2.1 Scala’s Parser Combinator

The Scala programming language has a community maintained parser combinator
library available for download. It makes use of Scala’s rich and scalable syntax to
allow a Domain-Specific Language (DSL) capable of representing an EBNF of the
CFG within Scala itself, without any need of external tools or software. The parser
combinator library is flexible enough to allow for anything as the output type, whether
it be Scala’s native types, plain text, or nodes in a parse tree.

A Brief Introduction to the Syntax The following operators are necessary to know to
understand the code:

∼ means followed by. So while in standard BNF you might have something like
1 Operand + Operand

2 In Scala you’d have to write
1 Operand ~ "+" ~ Operand

The ∼ denoting the separation between the terminals and nonterminals. ∼> and <∼
are variations of ∼, and have to do with simplifying pattern matching later.

∧∧ means if the pattern holds, do the following. So say one needs to match a number,
and then return it as an integer. That would be done as so:

1 "[0 -9]+".r ^^ {str => str.toInt}
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Where ".r" means turn string into regular expression. The above example states, that
if the pattern [0-9]+ matches, the string is then parsed to and returned as an integer.
Note that Foo ^^ Bar is shorthand for Foo ^^ {x =>Bar(x)}.

∧ ∧ ∧ is similar to ∧∧, except rather than doing something, it simply returns a value
1 "Hola" ^^^ "Hello"

If “Hola” occurs it’ll be parsed to “Hello”. In other words, ∧∧ expects a function,
∧ ∧ ∧ does not.

rep() matches a sequence repeated 0 or more times, it’s equivalent to the regular
expression *.

rep1() matches a sequence 1 or more times, and is equivalent to +. Both rep() and
rep1() return a list.

opt() matches 0 or 1 instance of the input sequence, and is equivalent to the regex ?.

| is the alternative, it works just like in BNF.

positioned() takes care of recording line and column numbers, saving them in a pos
field.

If a parser2 lacks a ∧∧∧ or ∧∧, it simply means it doesn’t do anything in particular,
this is useful for cases where something is defined as many other things. Compare the
following BNF to its equivalent code:

1 Literal ::= String | Number | Atom | List

1 def literal = string | number | atom | list

It doesn’t need to return anything in particular, as it’s just a nonterminal that groups
other terminals and nonterminals without performing any operations on them.

5.2.2 Parser Implementation

Nonterminals, and a few terminals in the code are represented with what Scala calls
case classes. Case classes, are a special subset of classes that behave like functions,
are able to be pattern-matched on, and come with a free string representation of
themselves. This makes them ideal for creating data structures that can easily be iter-
ated over, manipulated, and printed. The following section makes heavy use of these
case classes; IfExpression, MatchExpression, and ForComprehension are examples of

2Parser here means parser method in the context of a parser combinator
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these. The following section also takes a look at how selected bits of the parser are
implemented, in this case, the control structures if, match, and for.

Listing 5.1: If Expression
1 def ifExpr : Parser [ IfExpression ] =
2 positioned ("if" ~> ifBlock ^^ IfExpression )
3

4 def ifBlock : Parser [List[ IfStatement ]] =
5 "{" ~> rep1( ifStmt <~ ";") <~ "}" | ifStmt ^^ {
6 stmt => List(stmt)
7 }
8

9 def ifStmt : Parser [ IfStatement ] = stmt ~ "then" ~ expr ^^ {
10 case boolExpr ~ "then" ~ action =>
11 IfStatement (boolExpr , action )
12 }

Following the BNF closely, the if-expression is split up into three constituent parts, the
ifExpr, the ifBlock, and the ifStmt. An if-expression only contains an if-block, but the
if-block comes in two different forms; one capable of expressing an arbitrary number of
if-statements surrounded by curly braces, and one only capable of expressing a single
one not surrounded by anything. This is done to allow simpler one-liner if-statements
without any need for extra typing.
Compare for example if a < b then io.format("Hello");
with if { a < b then io.format("Hello"); };. This creates an interesting problem:
because of the fact that an if-block needs to return a list of if-statements, and not
just an if-statement, the case without curly braces therefore needs to be wrapped in
a List instance; this wrapping happens automatically when using rep1 in the other
case. The if-statement is an interesting case. It showcases Scala’s ability to treat
any lambda expression as a pattern match, allowing the user to operate on just the
patterns necessary.

Listing 5.2: Match Expression
1 def matchExpr : Parser [ MatchExpression ] =
2 positioned ("match" ~ "(" ~> expr ~ ")" ~ matchBlock ^^ {
3 case expr ~ ")" ~ block =>
4 MatchExpression (expr , block)
5 })
6

7 def matchBlock : Parser [List[ MatchStatement ]] =
8 "{" ~> rep1( matchStmt <~ ";") <~ "}" | matchStmt ^^ {
9 statement => List( statement )

10 }
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11

12 def matchStmt : Parser [ MatchStatement ] =
13 patternDef ~ "then" ~ expr ^^ {
14 case pattern ~ "then" ~ expression =>
15 MatchStatement (pattern , expression )
16 }

The match-expression differs from the if-expression in that it also requires an input
parameter; it also gives us our first real example of how ∼ and ∼> differ. ∼> ignores
everything left of it in the pattern match, which simplifies the matching, without it
matchExpr would have needed to be written like this:

Listing 5.3: matchExpr with full pattern
1 def matchExpr : Parser [ MatchExpression ] =
2 positioned ("match" ~ "(" ~ expr ~ ")" ~ matchBlock ^^ {
3 case "match" ~ "(" ~ expr ~ ")" ~ block =>
4 MatchExpression (expr , block)
5 })

This includes two unused terminals in the case expression that could just as easily
have been avoided. This isn’t without its downfalls though, as the ")" terminal needs
to remain, since adding a <∼ would also exclude the required matchBlock.

Listing 5.4: For Comprehension
1 def forCompr : Parser [ ForComprehension ] =
2 positioned ("for" ~> forBlock ~ ("do" | "yield") ~ block ^^ {
3 case forBlock ~ "do" ~ block =>
4 ForComprehension (forBlock , Left(Do), block)
5 case forBlock ~ "yield" ~ block =>
6 ForComprehension (forBlock , Right(Yield), block)
7 })
8

9 def forBlock : Parser [List[ ForStatement ]] =
10 "{" ~> rep1( forStmt <~ ";") <~ "}" | forStmt ^^ {
11 statement => List( statement )
12 }
13

14 def forStmt : Parser [ ForStatement ] =
15 identifier ~ "in" ~ expr ^^ {
16 case id ~ "in" ~ expr => ForStatement (id , expr)
17 }

The for-comprehensions exist in two different flavours, the do, and the yield variant,
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here represented as a single parser with an enclosed alternative3. Because of this
alternative, the expression following ∧∧ now has two different cases, one for do, and
one for yield, this creates slightly different nodes in the resulting parse tree, where one
holds a Left(Do), and the other holds a Right(Yield)4.

5.3 Parser Test

In order to test the parser for Quantum a series of smaller programs has been run
through. The purpose of this being validating the Abstract Syntax Tree (AST) be-
ing generated during the parsing process. An example of these can be found in the
following listing 5.5

Listing 5.5: One of the ran programs generating the for block AST
1 for {
2 i in K;
3 j in F;
4 } yield {foo ;};

The piece of code in 5.5 generated the AST in [Figure 5.2] which was then validated
to ensure the parser followed the wanted pattern.

Below in the figure there is an example of how a generalised AST for any program in
Quantum can contain. There will always be a ModuleName, and a list containing a
series of modules, ReceiverDefinitions, and ActorDefinitions. The example below in
[Figure 5.1] is what was generated by the test program contanign the for comprehen-
sion.

A specification of the "Block" node follows in [Figure 5.2] of cause still referring to the
test program for for comprehensions.

Aside from running these test cases, a black box unit test was also done for the parser.
In listing 5.3 an example of these tests can be found for parsing Number Literals.

1 it should "parse a string as a valid numberliteral " in {
2 val input = "1234"
3 val expectation = NumberLiteral ("1234")

3Note that everything between ∼ and | are parsers, meaning (“do”|“yield”) itself is a parser made
up of two other parsers. Hence the term parser combinator

4Right and Left are part of a built-in type called Either, which lets a variable be one of two
different types, the one caveat is that they need to be wrapped in a Left or a Right to be considered
valid. For example, Either[String, Int] can be either Left("some string"), or Right(42) (or any other
number).
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Figure 5.1: The generel AST in the beginning of a Quantum program
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Figure 5.2: The For Block AST genereted by the sample program in 5.5

4

5 val result = NParser .parse( NParser . numberLiteral , input)
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6 result should be ( expectation )
7 }

Besides the parser, some black box testing was also preformed for the tokenizer to
verify the tokens generated when keywords were met were correct.

Testing the correctness of the compiler in general is of course also something that has
been done. In order to do this the output code from the code generator was validated,
and run through a compiler for the intermediary language thus validating that the
program written in Quantum acts as expected.
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Chapter 6

Discussion

During the duration of this project some choices were made that impacted the outcome
of the language. In this chapter some of these choices will be discussed and argued
for.

6.1 Parallelism

In order to start the project a very important question had to be answered. What
should it be about and why should that be the subject. The group decided on a focus
point of parallel programming and that lead to Quantums creation. The reasoning
behind choosing this subject as the focus of the project were twofold.
For one the subject interested the group members. The notion of being able to com-
pute several pieces of code simultaneously in different cores would mean a significant
upgrade til computational speeds of many algorithms if some of the challenges behind
the idea could be avoided.
Secondly the group members found it to be a niche many native languages cannot
support. This made for further research into parallelism and concurrency. While re-
searching the group found other languages that could handle some of the problems
regarding parallelism. Some of these are as previously mentioned deadlocks as well
as race conditions. One of these languages was Bogdan/Björn’s Erlang Abstract Ma-
chine (BEAM) which the group decided would be the target for the compiler.
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6.2 Bogdan/Björn’s Erlang Abstract Machine

BEAM allows mixing thread code emulation with compiling into C[59].
By reading the Erlang BEAM virtual machine specification[59], it is visible that BEAM
guarantees that each process has its own heap and stack. The BEAM virtual machine
has its own scheduler to keep track of active and inactive processes[59].
In BEAM each process has its own message queue, placed locally for the process[59].
The scheduler swaps processes between active and inactive through messages received[59],
making this ideal for Message-Passing systems. Elixir uses the Erlang VM BEAM,
which is known for running low-latency, distributed and fault-tolerant systems, while
also being successfully used in web development and the embedded software domain[60]

6.3 Elixir

Elixir is a dynamic, functional concurrent programming language designed for build-
ing scalable and maintainable applications, and was created with the OO mindset and
based on the functional paradigm language Erlang, making it an multi-paradigm lan-
guage. This makes it a good compilation step before compiling to BEAM byte code,
as it can be complicated to compile to byte code directly.
The downside of choosing a target language like Elixir it the fact that there was no
available help for the group to be had. This meant that understanding the language
well enough to make the Quantum compiler generate code that could then be compiled
by the Elixir compiler was up to the group and the group alone.
In the end the group found that the positives of Elixir and BEAM were greater than
the difficulties there could arise from having to learn the language.

6.4 Parser Combinator

When the time came to look into creating a parser for the Quantum compiler the
choice fell on using a parser combinator. As previously mentioned this meant that the
group ended up being forced into one language, and writing the whole parser manually.
The Reasoning behind this choice, though it seems a bad idea, was the modularity of
the parser and the fact that most things the group needed to create the parser was
available in one library.
This choice also removed the opportunity of using a parser generator to help create
the parser in a more swiftly manor.
In the end the group found that Scala’s library for parser combinators were the better
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choice for the compiler as it would both help further the understanding of the parser
due to the fact that it was manually written. And also the built in features made it
easier to generate the needed grammars directly in the programming language without
having to use any additional tools.

6.5 Syntactic Choices

Regarding the syntax of Quantum an abundance of choices were made in order to
ensure readability, and writability. These decisions, to mention some range from data
types and data structures to punctuation when ending a statement. The overall out-
come of the choices was decided that it should be focused more on the readability
aspect instead of the writeability. This decision was made due to the fact that in
todays world of computer science it is not the time it takes to write a program that
is most expensive, but rather the time it takes to maintain. However the writability
cannot be sacrificed completely as the language would become very much a niche that
not many programmers would like to use.

6.6 Reliability

When evaluating the compiler looking at the output code is an essential step. Therefore
it is necessary to compile the intermediate language with its own compilers. This lead
the group to the conclusion, that the Quantum compiler is not particularly reliable in
its current state. It has very specific requirements regarding how to write the code in
Quantum or it will give errors when trying to compile either the Quantum code or the
Elixir output.
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Chapter 7

Conclusion

As the project is coming to an end it is time to look at the degree of completion and
in what manor the problem statement has been fulfilled.

To evaluate whether or not the problem statement has been fulfilled is a hard process
as there has been conducted no user tests. This means that an objective assessment
is impossible for the group to produce. The problem statement wrote:

Could multi-core processing become a more streamlined experience by implementing
the actor model in a manner invisible to the developer?

In Quantum the actor model has been hidden behind regular classes meaning that
in order to create actors one would simply create and instantiate a new object from
a class which lies very close to the general idea behind many of the OOP languages.
This means that making the actor model invisible to the developer has been completed.
Whether or not this has made the experience more streamlined is, as stated, impossible
to say.
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Chapter 8

Reflection

During the process of project some problems has been encountered. To mention some
of them user testing would, seen in hind sight, have been a great idea in order to give
the group a basis for assessing the problem statements completion. The management
of time on hand was not satisfying. In general a time table was completely absent
which would probably been a good idea to add in order to manage time.
In the future using time tables or backlogs is a thing that the group can agree on
is a necessary step to manage the work and avoiding falling far behind on the work.
Being firmer when enacting the group contract is also something that has to be done
regarding missing work and, or members.
Beginning the project the group did great work using peer writing to make headway
regarding the report. A lot of work were completed quickly. However the peer writing
died out as members fell out of the group due to various reasons.
The dividing of work and roles in the group is another thing that needs adjusting
in the future. This is another area where the missing group members impacted the
planed approach. Starting out the plan was to give on member a role that has to be
kept throughout the duration of the project. The roles began shifting leading to a bit
of chaos and confusion.
The workload was also planned quite differently from how it turned out. The plan
was to have the report lay dormant as the group focused on the compiler and then
added the implementation passages of the report as parts of the compiler were finished.
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SIMD Single Instruction Multiple Data

CSP Communicating Sequential Processes

OS Operating System

MS-DOS Microsoft Disk Operating System

I/O Input/Output

CPU Central Processing Unit

OOP Object-Oriented Programming

OO Object-Oriented

AST Abstract Syntax Tree

MPMD Multiple Program Multiple Data

SPMD Single Program Multiple Data

SMP Synchronous-Message-Passing

AMP Asynchronous-Message-Passing

PRAM Parallel Random Access Machine

SISD Single Input Single Data

SIMD Single Input Multiple Data

MISD Multiple Input Single Data

MIMD Multiple Input Multiple Data
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IC Integrated Circuit

SoC System on a Chip

ASIC Application-Specific Integrated Circuit

GPU Graphics Processing Unit

BEAM Bogdan/Björn’s Erlang Abstract Machine

IC Integrated Circuit

ASIC Application-Specific Integrated Circuit

CFG Context-Free Grammar

DSL Domain-Specific Language

BNF Backus-Naur Form

EBNF Extended Backus-Naur Form

ABNF Augmented Backus-Naur Form
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Appendix A

Robert Twitter Conversation

The chat conversation with Robert Virding, co-designer of Erlang.

Figure A.1: First picture
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Figure A.2: Second picture

Figure A.3: Third picture
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Figure A.4: Fourth picture
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Appendix B

RedMonk popularity Graph
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Appendix C

Grammar in Backus Naur Form

〈program〉 ::= ‘module’ 〈module-name〉 ‘;’ 〈top-level-cons〉

〈module-name〉 ::= 〈identifier〉 ‘.’ 〈module-name〉
| 〈identifier〉 ‘;’

〈top-level-cons〉 ::= 〈module-import〉 〈top-level-cons〉
| 〈actor-def 〉 〈top-level-cons〉
| 〈data-struct-def 〉 〈top-level-cons〉
| ε

〈module-import〉 ::= ‘import’ 〈module-name〉 ‘;’

〈actor-def 〉 ::= ‘class’ 〈type-def 〉 〈actor-body-block〉
| ‘class’ 〈type-def 〉 ‘<-’ 〈type-defs〉 〈actor-body-block〉
| ‘object’ 〈type-def 〉 〈actor-body-block〉
| ‘object’ 〈type-def 〉 ‘<-’ 〈type-defs〉 〈actor-body-block〉

〈type-defs〉 ::= 〈type-def 〉 ‘,’ 〈type-defs〉
| 〈type-def 〉

〈type-def 〉 ::= 〈identifier〉 ‘of’ 〈type-params〉
| 〈identifier〉

〈type-params〉 ::= 〈type-param〉 ‘,’ 〈type-params〉
| 〈type-param〉

〈type-param〉 ::= ‘(’ 〈type-def 〉 ‘)’
| 〈identifier〉
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〈string-lit〉 ::= ‘"(\.|[^"])*"’

〈identifier〉 ::= ‘[a-zA-Z_][a-zA-Z0-9_’-]*’

〈atom-def 〉 ::= ‘#[a-zA-Z_][a-zA-Z0-9_’-]*’

〈num-lit〉 ::= ‘[0-9]+’

〈hex〉 ::= ‘0x[0-9A-Fa-f]+’

〈bin〉 ::= ‘0b[01]+’

〈actor-body-block〉 ::= ‘{’ 〈actor-body-def 〉 ‘}’
|

〈actor-body-def 〉 ::= 〈message-def 〉 〈actor-body-def 〉
| 〈message-def 〉
| ε

〈message-def 〉 ::= define 〈type-def 〉 〈pattern-def 〉 ‘=’ 〈block〉

〈pattern-def 〉 ::= 〈literal〉
| ‘(’ 〈typedVal〉 ‘)’

〈typedVal〉 ::= 〈type-def 〉 〈identifier〉

〈data-struct-def 〉 ::= ‘data’ 〈type-def 〉 〈data-body-block〉
| ‘data’ 〈type-def 〉 〈data-body-block〉 ‘<-’ 〈type-defs〉

〈data-body-block〉 ::= ‘{’ 〈field-defs〉 ‘}’
| ε

〈field-defs〉 ::= 〈typedVal〉 ‘;’ 〈field-defs〉
| ε

〈block〉 ::= ‘{’ 〈stmts〉 ‘}’
| 〈stmt〉

〈stmts〉 ::= 〈stmt〉 〈stmts〉
| 〈stmt〉

〈stmt〉 ::= 〈expr〉 ‘;’
| 〈valDef 〉 ‘;’
| 〈binaryOperation〉 ‘;’
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〈valDef 〉 ::= ‘val’ 〈identifier〉 ‘=’ 〈expr〉
| ‘val’ 〈typedVal〉 ‘=’ 〈expr〉

〈funDef 〉 ::= ‘func’ 〈identifier〉 ‘(’ 〈funArgs〉 ‘)’ ‘=’ 〈block〉
| ‘func’ ‘(’ 〈funArgs〉 ‘)’ ‘=’ 〈block〉

〈funArgs〉 ::= 〈typedVal〉 ‘,’ 〈typedVal〉
| 〈typedVal〉

〈expr〉 ::= 〈if-expr〉
| 〈for-compr〉
| 〈match-expr〉
| 〈ask-stmt〉
| 〈identifier〉
| 〈funCall〉
| 〈fieldCall〉
| 〈metodCall〉
| 〈literal〉

〈tell-stmt〉 ::= ‘tell’ 〈ne-args〉 ‘about’ 〈ne-args〉 ‘;’

〈ask-stmt〉 ::= ‘ask’ 〈ne-args〉 ‘about’ 〈ne-args〉 ‘;’

〈if-expr〉 ::= ‘if’ 〈if-block〉

〈if-block〉 ::= ‘{’ 〈if-stmts〉 ‘}’
| 〈if-stmt〉

〈if-stmts〉 ::= 〈if-stmt〉 〈if-stmts〉
| 〈if-stmt〉

〈if-stmt〉 ::= 〈stmt〉 ‘then’ 〈expr〉

〈match-expr〉 ::= ‘match’ ‘(’ 〈expr〉 ‘)’ 〈match-block〉

〈match-block〉 ::= ‘{’ 〈match-stmts〉 ‘}’
| 〈match-stmt〉

〈match-stmts〉 ::= 〈match-stmt〉 〈match-stmts〉
| 〈match-stmt〉

〈match-stmt〉 ::= 〈patternDef 〉 ‘then’ 〈expr〉

ix



〈for-compr〉 ::= ‘for’ 〈for-block〉 ‘do’ 〈block〉
| ‘for’ 〈for-block〉 ‘yield’ 〈block〉

〈for-block〉 ::= ‘{’ 〈for-stmts〉 ‘}’
| 〈for-stmt〉 ‘;’

〈for-stmts〉 ::= 〈for-stmt〉 〈for-stmts〉
| 〈for-stmt〉

〈for-stmt〉 ::= 〈identifier〉 ‘in’ 〈expr〉

〈list〉 ::= ‘[’ 〈args〉 ‘]’

〈ne-args〉 ::= 〈expr〉 ‘,’ 〈ne-args〉
| 〈expr〉

〈args〉 ::= 〈ne-args〉
| ε

〈dec-lit〉 ::= 〈num-lit〉 ‘.’ 〈num-lit〉

〈literal〉 ::= 〈string-lit〉
| 〈num-lit〉
| 〈dec-lit〉
| 〈atom-def 〉
| 〈atom-def 〉 ‘(’ 〈args〉 ‘)’
| 〈list〉
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